Organizacja IX Konferencji Modelowanie Matematyczne

\ ‘ Ministerstwo Nauki w Fizyce i Technice (MMFT 2017)

A A s - zadanie finansowane w ramach umowy 829/P-DUN/2017
i Szkolnictwa Wyzszego ze $rodkéw Ministra Nauki i Szkolnictwa Wyzszego przeznaczonych

na dziatalno$¢ upowszechniajaca nauke.

Coalgebras for modelling behaviour

Valerie Novitzka, William Steingartner

Faculty of Electrical Engineering and Informatics
Technical University of KoSice, Slovakia

September 21st, 2017

Valerie Novitzka, Wi i bras for modelling behaviour 1/22

Behaviour of program systems

@ The aim of programing is to force the computer to execute some actions and to generate
a desired behaviour;

@ the most important concept is a state - an abstraction of computer memory;

@ execution of a program means a change of states;

@ states are often hidden from observer;

@ the aim of behavioural theory is to determine a relation between internal states and
observable values;

@ as a formal model coalgebras are used to provide observable behaviour of program systems;

Valerie Novitzka, William Steingartner algebras for modelling behaviour 2/22

Coalgebra

A coalgebra is defined as a mapping

c: State — Q(State);
where
@ State is the representation of states, state space;
@ Q: 6state — CState is @ polynomial endofunctor over a category of state representations.
To construct a coalgebra of a system

@ we start with a signature State of a state space specifying types and operations;

@ we construct a base category éstate Of State representations from a set State, where
morphisms are transitions (state changes);

@ we construct a polynomial endofunctor Q over a category indicated by a given signature;

@ we define a coalgebra c: State — Q(State).

Valerie Novitzka, William Steingartner algebras for modelling behaviour 3/22

Simple language _# ane

We introduce for ¢ ane the following syntactic domains:

n € Num for digit strings;

x € Var for variables names;

e € Aexpr for arithmetic expressions;
b € Bexpr for Boolean expressions;

S € Statm for statements.

Syntax:

Su=gz:=e|skip|S;S | if b then S else S | while b do S.

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 4/22

State space

A basic concept in coalgebraic approach is a state specified by the signature:

2State =
types: State,Var,Value

opns: init :— State
get : Var, State — Value
next : Statm, State — State

Representation:

@ we assign to the syntactic domain Val a set:
Value=Zu {L};

@ we assign to the type Var a countable set Var of variable names;

@ our representation of an element of type State has to express a variable name together
with its value:
s : Var — Value;

where
s={(z,v1),...,(z,vn))
@ special states are the initial state sg = [init] and undefined state s; = ((L, L));

@ state representations form the set State - state space.

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 5/22

Category

We construct a base category €s¢qte Of states, where

@ category objects are state representations from State; and

@ category morphisms are transitions defining changes of states.

We define the representation of next, the transition function [next]:

[next] : Statm — (State — State),

that returns for a statement S

[next][S] : State — State

the next state obtained from the execution of the first step of a statement S.

To be €state a category we require that every infinite path (composition of morphisms) has a
colimit.

Valerie Novitzka, William Steingartner

algebras for modelling behaviour 6/22

Transition function

Transition function is defined for statements of the language _Zane as follows:

s'=s[z [e]s]

[next][S1; S2](s")
[next][S2](s")
[next][S1](s)
[next][S2](s)
[next][S;while b do S](s)
abort(s)

[rext][S](s) =

if S=xz:=g¢

if S =skip

or S =while b do S and [b]s = false;

if $=51;52 and (S1;S52,s) = (S{;Sg,s’);
if S=51;52 and (S1;S52,s) = (S2,s');

if S=1if b then S; else Sy and [b]s = true;
if S=if b then S; else Sy and [b]s = false;
if S =while b do S and [b]s = true;
otherwise,

where abort is a unique morphism which sends any state to the undefined state s, :

abort : s -> s,

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 7/22

Polynomial endofunctor

Now we construct the polynomial endofunctor indicated by Xg;4te as

Q & %State - %State-

For our purposes we define a functor
Q(State) = 1 + State.
We define this functor for objects and morphisms in €s¢4te as follows:

Q(s) = s1 + [next][S]s,
Q([next][S]) = abort + [next][S].

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 8/22

Q-coalgebra for Zane

A Q-coalgebra, also called coalgebra of type Q or Q-system, is a pair

(State, [next][9]),

where State is a state space of the coalgebra and [next][S] is the structure map of the
coalgebra on State:

[next][S] : State — Q(State).

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 9/22

Example

We consider a simple program in ¢ ane:

z:=0;
while (y<z) do (z:=z+ 1 2=z —y);

and let the initial state be sg = [z — 17,y — 5].
We construct over a category €s¢qte a polynomial endofunctor

Q(State) = 1 + State

defined for objects and morphisms by

Q(s) = s1 + [next][S]s,
Q([next][S]) = abort + [next][S].

Valerie Novitzka, am Steingartner

Coalgebras for modelling behaviour 10/22

Example - continuation

Q(s0) = 1+ [next][So]so
= [next][S1; S2]s0
= [next][S2]s1
= [next][z = z + L;z := x — y; S2]s1
= [nezt]z := = - y; Sa2]s2
= [next][Sz2]s3
= [next][z = z + 1;2 := z — y; S2]s3
= [next][z := = — y; S2] s4
= [next][S2]ss
= [next][z := z + 1;z := x — y; S2] s5
= [next][z := x - y; S2] s6
= [next][S2]s7
=87

((%,17),(y,5))

((%,17),(y,5), (#,0))

((%,17),(y,5), (#,1))

g(z, 12), (y,5), (z, l)g ly < z]s3 = true
(

(

(

[y < z]s1 = true

(%,12),(y,5),(2,2)
(1'77)7(:%5)’(272)) IIySl']]S5=tI‘ue
(%,7),(y,5),(2,3))
(x,2),(y,5),(z,3)) HySCE]]S7=false

2&a2ES2E
L | | | R | R | N | I 1}

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 11/22

Object oriented programming

Basic concepts in object oriented programming are:

@ classes:

> class specification is like a signature specifying methods;

> it determines also an interface to a program;

> for implementation of methods some constraints (assertions) are given;
> the essentials are in a class specification;

» the particulars are in a class implementation;

@ objects:

» deal with specific tasks;

> coordination and communication is realized via sending of messages;
> objects have private data accessible only by methods;

> objects are grouped into classes;

> have local states accessible by the object methods;

» combine data structure with behaviour.

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour

Class and object

Class

Object

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 13/22

Coalgebra for OOP

A class specification is a named structure consisting of a tuple of methods of the form:
mi:XXAi%Bi+CiXX, fOI‘ZA=1,...777,7

where

@ X is a state space specification;

@ A, are inputs;

@ B; and C; are outputs of a method m;.
A polynomial endofunctor has then a form:

Q) = [1(Bi + Ci x X)4.
b

@ If C; = @, the associated method yields observable element from B;, but does not change
a local state;

@ if C; # @, the associated method changes a local state.

Let State be an interpretation of objects local states, with elements o € State.
A coalgebra
m = (m1,...,mn)
is defined by:
m : State -~ Q(State),

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 14/22

Example

Consider a class for bank accounts with the methods:

balance: X — R
change: X xR - X,

with the assertion:
s.change(a).balance = s.balance + a

for se X and a € R.

We interpret state space X as the set of finite sequences of reals R*, i.e. each element (object
of this class) o € R* is an account of the form

o= (ag,a1,...,an).

The polynomial endofunctor is
Q(R*) =R x (R")*

The methods balance and change together form a coalgebra
(balance, change) : R* — Q(R™).
Then the methods for an element o € R* are

o.balance = ag +aj + - +an o.change(a) = (ag,at,...,an,a).

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 15/22

Example -continuation

The assertion

o.change(a).balance = o.balance + a

is always valid.
The empty account is denoted by the empty sequence ().
Let now a state be the sequence

0=(3.2,5.3,-1.4).
Then

o.balance = 32+53-14="7.1 and
o.change(8.7) = (3.2,5.3,-1.4,8.7).

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 16/22

Example -continuation

We can consider another interpretation, which
@ keeps a record of changes;
@ makes additions immediately.

The interpretation of a state space X is a set R™ of non empty sequences of reals. For an
element (object)

o ={ay,...,an) eR*
the methods are
o'.balance = an, and o .change(a) = (a1,...,an,an +a).
The initial state is now (0.0).

A coalgebra is
(balance, change) : R* - Q(R™)

and the methods also satisfy the assertion

o’ .change(a).balance = o .balance + a.

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 17/22

Component based programming

Component based programming is about

@ how to create an application program from prefabricated components together;

@ with new software providing both glue between the components and new functionality.
A component

@ is an independent deployable entity;

@ it interacts with the environment by typed ports specified in its interface;

@ it has no observable state, its initial state is established after its deployment.

o

can be generic, substitution of its parameters by appropriate arguments (of proper types)
enable its using for different purposes.

The typed ports
@ serve as end points interactions;
@ they enable transfer of data of some type in required direction;

@ cooperation between components can be performed only trough ports of corresponding
types.

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 18/22

From components to an application

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 19/22

Coalgebra for components

To define coalgebras for components we denote by

@ [a set of typed input ports;
@ O a set of typed output ports.

Then an interface of a component is a pair

(1,0)

and a component is an arrow

comp: 1 — O.

To ensure genericity, we use a strong monad B over a base category and then a coalgebra of a
component is
Ccomp * Xcomp X Icomp = B(Xcomp X O)

For each state s € Xcomp the behaviour is organized as a tree because it depends on the
sequences of input values. In this tree:

@ elements of O are nodes;

@ elements of I are labels of edges.

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 20/22

Example

Consider a buffer Buffer as a component that stores input data elements (Message) and
returns them in responding to request. This component has one input port and one output port
and operations:

put: Message x Buffer — Buffer
pick: Buffer > Message x Buffer
Let
@ M be a type of messages;
@ M* represents a buffer;
@ [=M +1 represents inputs;
@ O =1+ M represents outputs, where 1 stands for nullary datatype.
The polynomial endofunctor is then

Q(M*) = (M* x0)!
and the coalgebra for this component is

c: M* - Q(M*).

Valerie Novitzka, William Steingartner

Coalgebras for modelling behaviour 21/22

Thank you for your attention

~Cat(egorie)s

Valerie Novitzka, William Steingartner Coalgebras for modelling behaviour 22/22

	Main Part
	Behaviour
	Coalgebras
	Jane
	SosSignature
	Category
	TransitionFunction
	PolyFunctor
	Q-Coalgebra
	Example1
	Example1a
	ObjectOriented
	Figures1
	CoalgebraOOP
	Example2
	Example2a
	Example2b
	ComponentBased
	Figures2
	ComponentCoalgebra
	Example3
	Thanks

