
Coalgebras for modelling behaviour

Valerie Novitzká, William Steingartner

Faculty of Electrical Engineering and Informatics
Technical University of Košice, Slovakia

September 21st, 2017

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 1/22



Behaviour of program systems

The aim of programing is to force the computer to execute some actions and to generate
a desired behaviour;
the most important concept is a state - an abstraction of computer memory;
execution of a program means a change of states;
states are often hidden from observer;
the aim of behavioural theory is to determine a relation between internal states and
observable values;
as a formal model coalgebras are used to provide observable behaviour of program systems;

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 2/22



Coalgebra

A coalgebra is defined as a mapping

c ∶ State→ Q(State);

where

State is the representation of states, state space;
Q ∶ CState → CState is a polynomial endofunctor over a category of state representations.

To construct a coalgebra of a system

we start with a signature State of a state space specifying types and operations;
we construct a base category CState of state representations from a set State, where
morphisms are transitions (state changes);
we construct a polynomial endofunctor Q over a category indicated by a given signature;
we define a coalgebra c ∶ State→ Q(State).

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 3/22



Simple language J ane

We introduce for J ane the following syntactic domains:

n ∈Num for digit strings;
x ∈Var for variables names;
e ∈Aexpr for arithmetic expressions;
b ∈ Bexpr for Boolean expressions;
S ∈ Statm for statements.

Syntax:

S ∶∶= x ∶= e ∣ skip ∣ S; S ∣ if b then S else S ∣ while b do S.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 4/22



State space
A basic concept in coalgebraic approach is a state specified by the signature:

ΣState =
types ∶ State, V ar, V alue

opns ∶ init ∶→ State

get ∶ V ar, State→ V alue
next ∶ Statm, State→ State

Representation:

we assign to the syntactic domain V al a set:

Value = Z ∪ {�} ;

we assign to the type V ar a countable set Var of variable names;
our representation of an element of type State has to express a variable name together
with its value:

s ∶Var→Value;

where
s = ⟨(x, v1) , . . . , (z, vn)⟩

special states are the initial state s0 = JinitK and undefined state s� = ⟨(�,�)⟩;
state representations form the set State - state space.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 5/22



Category

We construct a base category CState of states, where

category objects are state representations from State; and
category morphisms are transitions defining changes of states.

We define the representation of next, the transition function JnextK:

JnextK ∶ Statm→ (State→ State),

that returns for a statement S

JnextKJSK ∶ State→ State

the next state obtained from the execution of the first step of a statement S.

To be CState a category we require that every infinite path (composition of morphisms) has a
colimit.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 6/22



Transition function

Transition function is defined for statements of the language J ane as follows:

JnextKJSK(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′ = s [x↦ JeKs] if S = x ∶= e;
s if S = skip

or S = while b do S and JbKs = false;
JnextKJS′1; S2K(s′) if S = S1; S2 and ⟨S1; S2, s⟩ ⇒ ⟨S′1; S2, s′⟩ ;
JnextKJS2K(s′) if S = S1; S2 and ⟨S1; S2, s⟩ ⇒ ⟨S2, s′⟩ ;
JnextKJS1K(s) if S = if b then S1 else S2 and JbKs = true;
JnextKJS2K(s) if S = if b then S1 else S2 and JbKs = false;
JnextKJS;while b do SK(s) if S = while b do S and JbKs = true;
abort(s) otherwise,

where abort is a unique morphism which sends any state to the undefined state s�:

abort ∶ s⇢ s�

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 7/22



Polynomial endofunctor

Now we construct the polynomial endofunctor indicated by ΣState as

Q ∶ CState → CState.

For our purposes we define a functor

Q(State) = 1 + State.

We define this functor for objects and morphisms in CState as follows:

Q(s) = s� + JnextKJSKs,
Q(JnextKJSK) = abort + JnextKJSK.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 8/22



Q-coalgebra for J ane

A Q-coalgebra, also called coalgebra of type Q or Q-system, is a pair

(State, JnextKJSK) ,

where State is a state space of the coalgebra and JnextKJSK is the structure map of the
coalgebra on State:

JnextKJSK ∶ State→ Q(State).

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 9/22



Example

We consider a simple program in J ane:

z ∶= 0;
while (y ≤ x) do (z ∶= z + 1; x ∶= x − y);

and let the initial state be s0 = [x↦ 17, y ↦ 5].

We construct over a category CState a polynomial endofunctor

Q(State) = 1 + State

defined for objects and morphisms by

Q(s) = s� + JnextKJSKs,
Q(JnextKJSK) = abort + JnextKJSK.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 10/22



Example - continuation

s0

s1

s2

s3

s4

s5
s6

s7

CState

Q(s0) = 1 + JnextKJS0Ks0
= JnextKJS1; S2Ks0
= JnextKJS2Ks1
= JnextKJz ∶= z + 1; x ∶= x − y; S2Ks1
= JnextKJx ∶= x − y; S2Ks2
= JnextKJS2Ks3
= JnextKJz ∶= z + 1; x ∶= x − y; S2Ks3
= JnextKJx ∶= x − y; S2Ks4
= JnextKJS2Ks5
= JnextKJz ∶= z + 1; x ∶= x − y; S2Ks5
= JnextKJx ∶= x − y; S2Ks6
= JnextKJS2Ks7
= s7

s0 = ⟨(x,17), (y,5)⟩
s1 = ⟨(x,17), (y,5), (z,0)⟩ Jy ≤ xKs1 = true
s2 = ⟨(x,17), (y,5), (z,1)⟩
s3 = ⟨(x,12), (y,5), (z,1)⟩ Jy ≤ xKs3 = true
s4 = ⟨(x,12), (y,5), (z,2)⟩
s5 = ⟨(x,7), (y,5), (z,2)⟩ Jy ≤ xKs5 = true
s6 = ⟨(x,7), (y,5), (z,3)⟩
s7 = ⟨(x,2), (y,5), (z,3)⟩ Jy ≤ xKs7 = false

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 11/22



Object oriented programming

Basic concepts in object oriented programming are:

classes:
▸ class specification is like a signature specifying methods;
▸ it determines also an interface to a program;
▸ for implementation of methods some constraints (assertions) are given;
▸ the essentials are in a class specification;
▸ the particulars are in a class implementation;

objects:
▸ deal with specific tasks;
▸ coordination and communication is realized via sending of messages;
▸ objects have private data accessible only by methods;
▸ objects are grouped into classes;
▸ have local states accessible by the object methods;
▸ combine data structure with behaviour.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 12/22



Class and object

Class

Object

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 13/22



Coalgebra for OOP
A class specification is a named structure consisting of a tuple of methods of the form:

mi ∶ X ×Ai → Bi +Ci ×X, for i = 1, . . . , n,

where
X is a state space specification;
Ai are inputs;
Bi and Ci are outputs of a method mi.

A polynomial endofunctor has then a form:

Q(X) =
n

∏
i=1

(Bi +Ci ×X)Ai .

If Ci = ∅, the associated method yields observable element from Bi, but does not change
a local state;
if Ci /= ∅, the associated method changes a local state.

Let State be an interpretation of objects local states, with elements o ∈ State.
A coalgebra

m = ⟨m1, . . . , mn⟩

is defined by:
m ∶ State→ Q(State),

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 14/22



Example
Consider a class for bank accounts with the methods:

balance ∶ X → R
change ∶ X ×R→ X,

with the assertion:
s.change(a).balance = s.balance + a

for s ∈ X and a ∈ R.

We interpret state space X as the set of finite sequences of reals R∗, i.e. each element (object
of this class) o ∈ R∗ is an account of the form

o = ⟨a0, a1, . . . , an⟩.

The polynomial endofunctor is
Q(R∗) = R × (R∗)R

The methods balance and change together form a coalgebra

⟨balance, change⟩ ∶ R∗ → Q(R∗).

Then the methods for an element o ∈ R∗ are

o.balance = a0 + a1 +⋯ + an o.change(a) = ⟨a0, a1, . . . , an, a⟩.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 15/22



Example -continuation

The assertion

o.change(a).balance = o.balance + a

is always valid.

The empty account is denoted by the empty sequence ⟨⟩.

Let now a state be the sequence

o = ⟨3.2, 5.3,−1.4⟩.

Then

o.balance = 3.2 + 5.3 − 1.4 = 7.1 and
o.change(8.7) = ⟨3.2, 5.3,−1.4, 8.7⟩.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 16/22



Example -continuation

We can consider another interpretation, which
keeps a record of changes;
makes additions immediately.

The interpretation of a state space X is a set R+ of non empty sequences of reals. For an
element (object)

o′ = ⟨a1, . . . , an⟩ ∈ R+

the methods are

o′.balance = an and o′.change(a) = ⟨a1, . . . , an, an + a⟩.

The initial state is now ⟨0.0⟩.

A coalgebra is
⟨balance, change⟩ ∶ R+ → Q(R+)

and the methods also satisfy the assertion

o′.change(a).balance = o′.balance + a.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 17/22



Component based programming

Component based programming is about
how to create an application program from prefabricated components together;
with new software providing both glue between the components and new functionality.

A component
is an independent deployable entity;
it interacts with the environment by typed ports specified in its interface;
it has no observable state, its initial state is established after its deployment.
can be generic, substitution of its parameters by appropriate arguments (of proper types)
enable its using for different purposes.

The typed ports
serve as end points interactions;
they enable transfer of data of some type in required direction;
cooperation between components can be performed only trough ports of corresponding
types.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 18/22



From components to an application

⇓ composition

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 19/22



Coalgebra for components
To define coalgebras for components we denote by

I a set of typed input ports;
O a set of typed output ports.

Then an interface of a component is a pair

(I, O)

and a component is an arrow

comp ∶ I → O.

To ensure genericity, we use a strong monad B over a base category and then a coalgebra of a
component is

ccomp ∶ Xcomp × Icomp → B(Xcomp ×O)

For each state s ∈ Xcomp the behaviour is organized as a tree because it depends on the
sequences of input values. In this tree:

elements of O are nodes;
elements of I are labels of edges.

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 20/22



Example
Consider a buffer Buffer as a component that stores input data elements (Message) and
returns them in responding to request. This component has one input port and one output port
and operations:

put ∶ Message ×Buffer → Buffer
pick ∶ Buffer →Message ×Buffer

Let
M be a type of messages;
M∗ represents a buffer;
I = M + 1 represents inputs;
O = 1 +M represents outputs, where 1 stands for nullary datatype.

The polynomial endofunctor is then

Q(M∗) = (M∗ ×O)I

and the coalgebra for this component is

c ∶ M∗ → Q(M∗).

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 21/22



Thank you for your attention

Valerie Novitzká, William Steingartner Coalgebras for modelling behaviour 22/22


	Main Part
	Behaviour
	Coalgebras
	Jane
	SosSignature
	Category
	TransitionFunction
	PolyFunctor
	Q-Coalgebra
	Example1
	Example1a
	ObjectOriented
	Figures1
	CoalgebraOOP
	Example2
	Example2a
	Example2b
	ComponentBased
	Figures2
	ComponentCoalgebra
	Example3
	Thanks


